
Laplacian Solvers and Graph

Sparsification

A Thesis Submitted

in Partial Fulfilment of the Requirements

for the Degree of

Master of Technology

by

Vijay Keswani

Roll No. : 11907799

under the guidance of

Dr. Rajat Mittal

Department of Computer Science and Engineering

Indian Institute of Technology Kanpur

May, 2016

CERTIFICATE

It is certified that the work contained in the thesis titled Laplacian Solvers and

Graph Sparsification, by Vijay Keswani, has been carried out under my supervi-

sion and that this work has not been submitted elsewhere for a degree.

Dr. Rajat Mittal

Department Computer Science and Engineering

Indian Institute of Technology

Kanpur-208016

May, 2016

ii

Abstract

Graph Laplacian system of equations figure in a variety of problems in computer science,

including fundamental graph theory, computer vision and electrical circuits. Though

many traditional algorithms for solving linear system of equations could be used for this

problem, the time complexity of these algorithms is super quadratic in the input size.

One hopes to exploit the graph sub-structure associated with the system to possibly

achieve a faster approximate solver. Spielman and Teng provided a major result in this

direction by exhibiting an algorithm which solves a Laplacian system in time almost-

linear in the number of edges of the graph.

In this work, we survey and explore the solver by Spielman-Teng, and analyze the various

sub-routines in the algorithm, including Spectral Sparsification. Spectral sparsifiers

are subgraphs of the graph whose Laplacian eigenvalues are close to the eigenvalues of

the original graph Laplacian. We present the Randomized Sparsification techniques of

Spielman-Srivastava and the Deterministic Sparsification algorithm of Batson-Spielman-

Srivastava, and analyze the underlying intuition behind the algorithms.

We further survey and analyze the Laplacian solver given by Kelner et al., and discuss

how it is similar to the Spielman-Teng Laplacian solver. This solver is based on the

Randomized Kaczmarz iterative method for solving linear system of equations. We

provide two extensions of this iterative technique, based on dihedral angles between

hyperplanes, and analyze their convergence bounds. We also show that these extensions

can be used to solve Laplacian systems as well.

iii

Acknowledgments

I wish to express my profound gratitude to my thesis advisor, Dr. Rajat Mittal, for

introducing me to this wonderful topic and guiding me throughout the thesis. I will

fondly remember our weekly discussions on varied topics in Theoretical Computer Sci-

ence. I am thankful to him for instilling a sense of mathematical rigor in me, while

encouraging me to intuitively understand the topics. Most of all, I am grateful to him

for his patience, even when I was a beginner in the field. I am also indebted to Dr.

Satyadev Nandakumar for his lectures and discussions on various topics.

I would also like to thank my family and friends for their continuous humour, support

and motivation, throughout my academic career.

iv

Contents

Abstract ii

Contents v

1 Introduction 1

1.1 Overview . 1

1.2 History . 2

1.3 Outline . 4

1.4 Preliminaries . 5

1.4.1 Positive Semi-Definite Matrix . 5

1.4.2 Spectral Decomposition . 6

1.4.3 Pseudo-Inverse . 6

1.4.4 Interlacing polynomials . 7

1.4.5 Laplacian Matrix of a graph . 8

1.4.6 Laplacian Systems and Electrical Circuits 9

1.4.7 Laplacian solver . 11

2 Randomized Spectral Sparsification 12

2.1 Overview . 12

2.2 Randomized Sparsification using Ahlswede-Winter Inequality 13

2.3 Randomized Graph Sparsification . 15

2.4 Stretch Sparsifiers . 19

3 Deterministic Spectral Sparsification 23

3.1 Overview . 23

3.2 Rank one updates . 24

3.3 Interlacing polynomials . 25

3.4 Analysis of the Associated Laguerre Polynomial 27

3.5 Deterministic Sparsification Algorithm using Barrier Functions 31

4 Laplacian Solver using Preconditioners 38

4.1 Overview . 38

4.2 Preconditioners . 38

4.2.1 Condition number of a matrix . 39

4.2.2 Laplacian Preconditioner . 40

4.3 Greedy Elimination using Cholesky Decomposition 41

4.3.1 Cholesky Decomposition . 41

4.3.2 Decomposition using Schur’s complement 42

v

Contents vi

4.3.3 Decomposing the Laplacian system 43

4.4 Recursive Preconditioning and Complexity Analysis 44

5 Laplacian Solver using Randomized Kaczmarz Method 47

5.1 Overview . 47

5.2 Kaczmarz Method . 48

5.3 Randomized Kaczmarz Method . 48

5.4 Equivalent formulation of Laplacian system 51

5.4.1 Basis of cycle space of graph G . 53

5.4.2 Choice of f0 . 54

5.4.3 Condition number of the system 55

5.5 New directions - Randomized Kaczmarz methods based on Dihedral Angles 57

5.5.1 Method 1 . 57

5.5.1.1 Application of Dihedral Angles based Randomized Kacz-
marz algorithm to Laplacian systems 59

5.5.2 Method 2 . 60

6 Future Directions 62

Bibliography 63

Chapter 1

Introduction

1.1 Overview

The field of Spectral Graph Theory aims to explore the combinatorial properties of

a graph through its spectrum, that is, the set of eigenvalues of either the Adjacency

Matrix or the Laplacian matrix. Several results across the years have established the

fact that there exists an innate relationship between the structural properties of a graph

and its spectrum. One of the earliest and famous results in this respect is the Cheeger’s

Inequality, which relates the size of the worst cut in the graph to the spectral gap of the

transition matrix of a simple random walk on that graph.

We are interested in solving the linear system of equations Lx = b, where L is the

Laplacian matrix of a graph. The Laplacian system of equations occur in many natural

contexts, including finding voltages and currents in an electrical circuit, calculating

maximum flow, etc. The problem of finding solutions to a Laplacian system quickly is

a problem with far-reaching implications.

The classic Gaussian Elimination method of solving a linear system of n equations in n

variables gives a solution in time proportional to the time taken to multiply two n× n

matrices, for which the best known algorithm has complexity O(n2.373). This is perhaps

too slow for our purpose, since the graph corresponding to the Laplacian system may

1

Chapter 1. Introduction 2

potentially have billions of nodes. In general, it was believed that the Laplacian system

can be solved in linear time.

Spielman and Teng, in their seminal paper on this subject, provided the first nearly-linear

time algorithm for the Laplacian system, and in the process, put forward a wide range

of graph-eigenvalue relations to explore. They introduced the notion of spectral sparsifi-

cation, which they used as sub-routines in their Laplacian solvers. In a graph-theoretic

sense, spectral sparsification aims to find subgraphs of the graph whose Laplacian eigen-

values are close to the Laplacian eigenvalues of the original graph. Spectral sparsifiers

are useful because if H spectrally approximates G, then we can solve the problem in

consideration for H rather than G, since it has fewer edges than G.

Furthermore, in the process of developing these solvers, a better understanding of the

underlying random matrices was developed. Many general results in matrix theory were

also given using the same methods. The most famous result in this regard was the affir-

mative resolution to Kadison-Singer conjecture, proven using the method of interlacing

families.

In this work, we study, survey and explore solvers for Laplacian systems and randomized

and deterministic algorithms for Spectral Sparsification.

1.2 History

Several efforts have been made in the past to provide a complete characterization of

the properties of the graph using its spectrum. In particular, the work of Fiedler

[Fie73][Fie10] showed the importance of second eigenvalue to the connectivity of the

graph. Later on, Cheeger [Che70] showed how Laplacian eigenvalues can prove exis-

tence of good cuts in the graph. Further relations to isoperimetric properties of the

graph were established in subsequent research [AM85].

Most general methods of solving linear system of equations rely on Gaussian elimination

or related techniques. It was known that the Cholesky decomposition of the Laplacian

matrix can lead to a nearly-linear time solver for Laplacian systems corresponding to

Chapter 1. Introduction 3

trees [Vis13]. The result can also be generalized to Laplacians of planar graphs, where the

work of Tarjan, Lipton and Gilbert [GT86] [GT79] can be used to solve such Laplacian

systems in O(n1.5) time using Cholesky decomposition, where n is the number of vertices

in the graph.

The first nearly-linear time solver to solve Laplacian systems was given by Spielman and

Teng [ST04] [ST08], in which they also introduce the concept of spectral sparsification.

They were inspired by the idea of combinatorial preconditioning, introduced by Vaidya

[Vai91] in an unpublished thesis. The solver of Spielman and Teng was later improved

upon by Koutis et al. [KMP11], which led to algorithms that ran in O(m log n) time,

where n is the number of vertices in the graph and m is the number of edges. Kolla

et al. [KMST10] subsequently showed the existence of an algorithm that can run in

O(m log1/2 n) time.

The notion of graph sparsification was earlier known with respect to cuts, where optimal

bounds and constructions were given by Benczur and Karger [BK96]. Spectral sparsi-

fication can be considered as a much more general notion of sparsification, and is an

important subroutine in the Laplacian solver of Spielman-Teng. The first randomized

algorithm for spectral sparsification was also provided by Spielman and Teng [ST11].

This was followed by another randomized spectral sparsification algorithm by Spielman

and Srivastava [SS08], a result we present and discuss in this report. Later, Batson et al.

[BSS09] provided a deterministic spectral sparsification algorithm, using the concepts of

barrier functions and interlacing polynomial families.

Kelner et al. proposed a new approach to solving Laplacian system in [KOSZ13]. In

general, solving Laplacian system corresponds to finding the voltages on the nodes in

the electric circuit corresponding to the graph. Kelner et al., however suggested a solver

which focuses on finding the electrical current in the circuit. The resulting solver is much

simpler compared to the Laplacian solver of Spielman-Teng. Their result was extended

by Lee and Sidford [LS13].

Both the solvers cited above, in their basic form, require the existence and fast construc-

tion of low-stretch spanning trees. The corresponding linear-time algorithm for finding

such trees was given by Elkin et al. [EEST08].

Chapter 1. Introduction 4

The notion of spectral sparsification for random matrices is the following : For every set

of matrices whose sum is identity, does there exist a weighted subset of small size, whose

sum has eigenvalues in the range [(1− ε), (1 + ε)]. The results in spectral sparsification

therefore, can be extended to many different random matrix related scenarios. In a series

of papers, Marcus, Spielman and Srivastava came up with a method of interlacing fam-

ilies of polynomials, using which they gave a positive resolution of the Kadison-Singer

conjecture [MSS15], and also proved the existence of bipartite Ramanujan graphs of all

degrees [MSS13]. The techniques used here intersect with those used in Determinis-

tic Spectral Sparsification algorithm by Batson et al. [BSS09], particularly the use of

Associated Laguerre polynomials and Barrier functions.

Very recently, the work of Kyng and Sachdeva [KS16] has provided a randomized algo-

rithm to construct sparse Cholesky decomposition of general graphs and a corresponding

unique Laplacian solver.

1.3 Outline

The primary purpose of this report is to survey the recent research in the field of Lapla-

cian solvers and Spectral Sparsification, and study possible extensions of the underlying

ideas. For this, we first look at the results in spectral sparsification and graph sparsifi-

cation.

We describe the general notion of spectral sparsification, and in Chapter 2 and Chapter

3, we look at the optimal results in randomized and deterministic spectral sparsfication.

In both these chapters, we refrain from starting with the graph perspective. The topic

of spectral sparsification is much more general, with graph sparsification being one of

its implications. In this regard, we first present the general results for random matrices

and then show how they imply graph sparsification.

The randomized spectral sparsification algorithm of Spielman and Srivastava is presented

in Chapter 2. The basic idea here is to sample edges with probability proportional to

Chapter 1. Introduction 5

the effective resistance of the edges, and construct a weighted subgraph using the sam-

pled edges. Using matrix concentration inequalities, it can be shown that this weighted

subgraph is a good sparsifier of the original graph.

Chapter 3 expands upon the deterministic spectral sparsification algorithm of Batson,

Spielman and Srivastava. This algorithm makes use of barrier functions to keep the

eigenvalues of the system bounded. The application of barrier functions in this setting

is a unique and novel idea, though the intuition for the same is not provided in the

original papers. We use the analysis of the Kadison-Singer problem by Marcus, Spielman

and Srivastava, to motivate the application of barrier functions to this setting, and

correspondingly provide a complete analysis of the algorithm.

In Chapter 4, we show how one can use spectral sparsification to construct a nearly-

linear time Laplacian solver. In this chapter, we provide the complete algorithm of

Spielman-Teng and Koutis-Miller-Peng, for solving a Laplacian system and analyze the

time complexity and error bounds of the algorithm.

Chapter 5 deals with another Laplacian solver, given by Kelner et al., based on an

iterative method called the Randomized Kaczmarz method. This solver is significantly

simpler to state and analyze compared to the spectral sparsification based Laplacian

solver, but in essence, is connected to the earlier solver. We again provide the complete

algorithm and its analysis in this chapter. We also look at certain disadvantages of

the Randomized Kaczmarz algorithm and state extensions that possibly can tackle such

problems. In the end, we prove that these extensions can also be used to solve Laplacian

systems.

1.4 Preliminaries

1.4.1 Positive Semi-Definite Matrix

A symmetric n × n real matrix M is called a positive semi-definite (PSD) matrix if all

the eigenvalues of M are greater than or equal to 0. An alternate characterization of the

positive semi-definiteness of a matrix can be given by the quadratic form of the matrix,

Chapter 1. Introduction 6

that is, M is PSD iff for any x ∈ Rn such that x 6= 0,

xTMx ≥ 0

We will denote PSD matrices by the following notation M � 0.

Furthermore, the notation A � B will denote that A−B � 0, or A−B is a PSD matrix.

1.4.2 Spectral Decomposition

Spectral decomposition of a real symmetric n× n matrix is a method of expressing the

matrix in terms of its eigenvalues and eigenvectors.

Theorem 1.4.1 (Spectral Decomposition Theorem). Let A be a real symmetric n × n

matrix with eigenvalues λ1, λ2, . . . , λn and corresponding eigenvectors u1,u2, . . . ,un.

Then

A =

n∑
i=1

λiuiu
T
i

Since B has the same action as A for all ui, B = A.

1.4.3 Pseudo-Inverse

For an n× n matrix A, B is called the inverse of A if AB = I. A square matrix is not

invertible if and only if the determinant A is zero. For a real symmetric matrix, this

happens if atleast one eigenvalue is zero.

For such matrices, we define the pseudo-inverse, which is a generalization of the concept

of inverse.

Say we have a real symmetric n× n matrix A, with spectral decomposition

A =

n∑
i=1

λiuiu
T
i

Chapter 1. Introduction 7

If A is invertible, then we can write A−1 as

A−1 =
n∑
i=1

1

λi
uiu

T
i

If A is not invertible, then atleast one of λi’s is zero. For the pseudo-inverse of such a

matrix, we set coefficients λ′i’s as

λ′i =

1
λi
, if λi 6= 0

0, otherwise

Then, the pseudo-inverse of A, denoted by A+, is

A+ =
n∑
i=1

λ′iuiu
T
i

The concept of pseudo-inverse can be generalised to other kinds of matrices using Sin-

gular Value Decomposition, and we refer the reader to the the survey [BH12] for more

information on the topic.

1.4.4 Interlacing polynomials

Definition 1.4.1 (Interlacing). Let f be a real-rooted polynomial of degree n with roots

α1 ≤ α2 ≤ · · · ≤ αn and g be another real-rooted polynomial of degree n or n− 1 with

roots β1 ≤ β2 ≤ · · · ≤ βn.1 Then we say g interlaces f if

β1 ≤ α1 ≤ β2 ≤ α2 ≤ · · · ≤ βn ≤ αn.

The above defined notion of interlacing can be extended to a family of polynomials where

all the polynomials of the family interlace a common polynomial.

Definition 1.4.2 (Common Interlacing). Let {fi(x)}i be family of real-rooted polyno-

mials of degree n, with αi1 ≤ αi2 ≤ · · · ≤ αin denoting the roots of fi. Then we say the

1Ignore β1 if g has degree n− 1.

Chapter 1. Introduction 8

polynomials {fi(x)}i have a common interlacing if there exists γ1, γ2, . . . , γn such that

for all i,

αi1 ≤ γ1 ≤ αi2 ≤ · · · ≤ αin ≤ γn.

The concept of interlacing is common in linear algebra, specifically with respect to char-

acteristic polynomials of matrices. One such result is the fact the polynomial det(xI−A)

interlaces det(xI−(A+vvT)). It can be derived from Cauchy’s interlacing lemma[Hae],

which we will use later in Chapter 3.

1.4.5 Laplacian Matrix of a graph

The Laplacian matrix of a graph G is defined as

L := D −A

where A is the adjacency matrix of G and D is the degree matrix of G, with

Ai,j =

1, if (i, j) ∈ E

0, otherwise

and

Di,j =

degree(i), if i = j

0, otherwise

We will call the eigenvalues of L to be λ1, λ2, . . . , λn, with

λ1 ≤ λ2 ≤ · · · ≤ λn.

It can be easily verified that the 1 vector is an eigenvector of L with eigenvalue 0.

Claim 1.4.1. For a graph G = (V,E) and x ∈ R|V |,

xTLx =
∑

(i,j)∈E

(xi − xj)2

Chapter 1. Introduction 9

where L is the Laplacian matrix of G.

Proof. For any x ∈ R|V |,

xTLx =
∑
e∈E

xTLex

where Le is the Laplacian for the graph with just the edge e. Say e = (i, j). Then,

xTLex = (xi − xj)2

Therefore,

xTLx =
∑

(i,j)∈E

(xi − xj)2

The above claim also proves that the Laplacian matrix is a positive-semidefinite matrix,

since xTLx ≥ 0, for all x ∈ R|V |. Therefore the smallest eigenvalue is 0.

Further, it can be shown that the second smallest eigenvalue of the Laplacian matrix is

non-zero if and only if the graph is connected.

1.4.6 Laplacian Systems and Electrical Circuits

The connection between solutions to Laplacian systems and electrical circuits provides

crucial intuition to the work in this area. On a high level, it provides an abstraction on

the physical importance of Laplacian solvers. We will show how voltages and current

can be calculated using the solutions to Laplacian systems.

Say we are given a graph G = (V,E). Give any orientation to the edges of G. We define

vectors be ∈ R|V | for all e ∈ E as

bie =

1, if i is the head of e

−1, if i is the tail of e

0, otherwise

Chapter 1. Introduction 10

These vectors are called edge-incidence vectors. The matrix with these vectors as rows

is called the edge-incidence matrix, and will be denoted as B ∈ R|E|×|V |.2

It is easy to observe that BTB = L.

Consider an electrical circuit based on the graph G. The edges will each have a one ohm

resistance. We will denote the voltages on the nodes by v ∈ R|V | and current on the

edges by i ∈ R|E|.

Say b ∈ R|V | is the vector denoting the external input current to the nodes. By Kirchoff’s

current law, we know that for each node, the sum of incoming and outgoing current must

be equal to the external input to that node. This can be expressed by the following

equation,

BT i = b.

By Ohm’s law, voltage difference across an edge must be equal to the product of current

in that edge and the resistance of that edge (which is 1 ohm). Therefore,

Bv = i.

Combining the above two equations, we get

BTBv = b ⇒ Lv = b

Hence, the voltages in the nodes of this circuit is the solution to the above Laplacian

system. This gives a simple but a very crucial relationship between these two problems.

Corresponding to the external vector b, the voltage difference across the endpoints of

an edge e = (i, j) is equal to

vi − vj = bTe L
+b

The effective resistance between two nodes is defined as the voltage difference between

two nodes when one unit of current is given to one node and taken out from the other.

From our above characterization, we can infer that the effective resistance across the

2The head and tail of the edges are interchangeable.

Chapter 1. Introduction 11

edge e, denote by Re is

Re = bTe L
+be

The above notions can be extended to weighted graphs. Say W ∈ R|V |×|V | is the diagonal

weight matrix, then L = BTWB, and the other definitions change correspondingly.

1.4.7 Laplacian solver

In the subsequent chapters, we will see how we can solve Laplacian systems in almost-

linear time. With regard to this problem, the general theorem that we will be proving

is the following:

Theorem 1.4.2. Given a graph G with m edges and n vertices, vector b ∈ Rn, and error

parameter ε > 0, we can find a vector x such that

||x− L+b|| ≤ ε||L+b||

in time Õ(m log(1/ε)).

Chapter 2

Randomized Spectral

Sparsification

2.1 Overview

The central purpose of Spectral Sparsification is the following : given a set of n×n real

symmetric positive-semidefinite matrices M1,M2, . . . ,Mm whose sum is identity, find a

weighted subset of small size whose sum has all eigenvalues close to 1. Formally, we

would like to prove the following general statement:

Theorem 2.1.1. Let ε > 0 and Mi ∈ Rn×n for i ∈ [1,m] be symmetric, positive semidef-

inite matrices such that
m∑
i=1

Mi = I

Then, in polynomial time, we can find scalars si ≥ 0 for i ∈ [1,m] such that

(1 + ε)−1I �
m∑
i=1

siMi � (1 + ε)I

and |{si|si 6= 0}| = O(n/ε2).

12

Chapter 2. Randomized Spectral Sparsification 13

The original motivation for spectral sparsification was its application to graph sparsi-

fication, i.e., given a graph G, to find a subgraph H, such that the eigenvalues of the

Laplacian of H are within a (1 + ε) factor of the eigenvalues of the Laplacian of G.

The notion of spectral sparsification was introduced by Spielman and Teng [ST08]

[ST11], who gave a randomized algorithm for constructing sparsifiers of sizeO(n polylog n/ε2).

They used the resultant sparsifiers to construct the first nearly linear-time Laplacian

solver. Spielman and Srivastava gave another randomized algorithm for spectral sparsi-

fication, using the concept of sampling using effective resistances to obtain sparsifiers of

size O(n log n/ε2) [SS08] . We will describe this algorithm in a later section and analyze

its complexity bounds.

A slightly looser version of spectral sparsification theorem can be proved using Matrix

Chernoff bounds. The next section elaborates upon this connection.

2.2 Randomized Sparsification using Ahlswede-Winter In-

equality

Matrix Chernoff bounds are Chernoff-like bounds for matrix-valued random variables.

Several such bounds have been discovered, including the Rudelson inequality [Rud99]

employed in the original proof of spectral sparsification theorem by Spielman and Srivas-

tava, and the Ahlswede-Winter inequality [AW06], which can be used to get the spectral

sparsification result.

Theorem 2.2.1 (Ahlswede-Winter inequality [AW06]). Let Y ∈ Rn×n be a random, sym-

metric, positive semidefinite matrix such that E[Y] = µI1. Let ρ := supY ||Y ||, and

Y1, . . . , YT be T i.i.d. copies of Y . Say ε > 0 is a small constant. Then,

Pr[||S − I|| > ε] ≤ 2n · exp(−Tε
2µ

2ρ
)

where S := 1
µT

∑T
i=1 Yi

1The statement is also valid if E[Y] = µ
∑n′

i=1 eie
T
i , where ei’s are standard basis vectors.

Chapter 2. Randomized Spectral Sparsification 14

Proof of Theorem 2.1.1. We will prove Theorem 2.1.1 using the Ahlswede-Winter in-

equality by defining a suitable random process. We have matrices M1,M2, . . . ,Mm

whose sum is identity. We define the random variable Y that takes values Mi/Tr[Mi]

with probability Tr[Mi]/n. Then,

E[Y] =
m∑
i=1

Mi

Tr[Mi]

Tr[Mi]

n
=

1

n
· I

Also,

sup
Y
||Y || = sup

i

||Mi||
Tr[Mi]

≤ 1

Applying Ahlswede-Winter inequality on the above random process Y , we get the prob-

ability that after T iterations, S is ε-far from identity is less than

2n · exp(
Tε2µ

2ρ
) ≥ 2n · exp(

Tε2

2n
)

For T = O(n log n/ε2), the above probability becomes less than 1/2.

Therefore, we will have O(n log n/ε2) samplings Mi with non-zero weights

si =
1

T · Tr[Mi]

If a matrix Mi is sampled multiple times, it’s weight is added up. This proves Theorem

2.1.1 for |{si|si 6= 0}| = O(n log n/ε2).

Corollary 2.2.1. Let β > 0 and Mi ∈ Rn×n for i ∈ [1,m] be symmetric, positive semidef-

inite matrices such that
m∑
i=1

Mi = M ′

Say we are given numbers qi such that qi ≥ Tr[Mi], for all i ∈ [1,m]. Let W :=
∑m

i=1 qi.

Then we can find scalars si ≥ 0 for i ∈ [1,m] such that

M ′ � 2
m∑
i=1

siMi � 3M ′

Chapter 2. Randomized Spectral Sparsification 15

and |{si|si 6= 0}| = O(W logW log(1/β)).

Proof. Using the probability distribution induced by {qi} in the proof of Theorem 2.1.1,

and taking ε = 1/2 will result in the above corollary. The number of samples needed to

achieve the result with probability 1− β will be O(W logW log(1/β)).

2.3 Randomized Graph Sparsification

As stated earlier, graph sparsification and its corresponding use in construction of Lapla-

cian solvers was the main motivation for spectral sparsification. The main theorem for

graph sparsification is the following :

Theorem 2.3.1 ([SS08]). Given a graph G = (V,E) with n vertices and m edges, we can

find a subgraph H of G with vertex set V , such that

(1 + ε)−1LG � LH � (1 + ε)LG

in time Õ(m), with high probability. The number of edges in H will be O(n/ε2).

Proof. 2 To get the above result from Theorem 2.2.1, we need to define an appropriate

random process, as done in the proof of Theorem 2.1.1 from Ahlswede-Winter inequality.

Say we consider the following random process : with probability pe, the random variable

Y takes value beb
T
e /pe. Then after T samplings [Y1, . . . , YT],

E

[
1

T

T∑
i=1

Yi

]
=

1

T

T∑
i=1

E[Yi]

E[Y] =
∑
e∈E

pe · bebTe /pe = LG

Therefore,

E

[
1

T

T∑
i=1

Yi

]
= LG

2The proof given here results in E(H) = O(n logn/ε2). We will show the stronger bound later.

Chapter 2. Randomized Spectral Sparsification 16

If we take our graph H to consist of edges sampled according to the distribution, and

set the weight of edge e in H to be 1/(T · pe), then E[LH] = LG.

However, we need to find a probability distribution so that LH is spectrally close to LG

with high probability, and to make use of Ahlswede-Winter inequality in this regard, we

will have to transform our random process accordingly to satisfy the assumptions.

Recall that Laplacian of G can be written as LG = BBT , where B ∈ Rn×m is the

edge-incidence matrix of G. We need to prove the following statement :

(1− ε) ≤ xTLHx

xTLGx
≤ (1 + ε)

⇒
∣∣∣∣xT (LH − LG)x

xTLGx

∣∣∣∣ ≤ ε
⇒

∣∣∣∣xT (LH − LG)x

xTBBTx

∣∣∣∣ ≤ ε
Taking y = BTx, we get x = L+

GBy, and

∣∣∣∣yTBTL+
G(LH − LG)L+

GBy

yTy

∣∣∣∣ ≤ ε
Therefore,

(1− ε) ≤ xTLHx

xTLGx
≤ (1 + ε)⇒

∣∣∣∣yT (BTL+
GLHL

+
GB −BTL+

GB)y

yTy

∣∣∣∣ ≤ ε
(1)

Note that LH =
∑

e∈E(H)w
′(e)beb

T
E , where w′ is the weight function for H.

Using the alternate problem statement above, we can define our random process as the

following : the random variable Y = Me/Tr[Me] with probability pe = Tr[Me]/
∑

e Tr[Me],

where Me = vev
T
e and ve = BTL+

Gbe.

Note that having fixed the random process also fixes our probability distribution. To be

precise,

Tr[Me] = ||ve||2 = bTe L
+
Gbe = Re

Chapter 2. Randomized Spectral Sparsification 17

Therefore, the probability of choosing e is proportional to the effective resistance across

the endpoints of edge e. We will also show that∑
e Tr[Me] =

∑
eRe = n− 1.

All that needs to be done to effectively apply Ahlswede-Winter inequality is the analysis

of E[Y].

E[Y] =
∑
e∈E

Me

Tr[Me]

Tr[Me]∑
e Tr[Me]

=
1

n− 1
·BTL+

GB =
1

n− 1
Π

Note that matrix Π is the projector onto the image of BT . We will look at the properties

of Π, and see that we can apply the concentration inequality for it.

Properties of Π

1. Π2 = BTL+
GBB

TL+
GB = BTL+

GB = Π

2. Say λ is the eigenvalue of Π for eigenvector x. Then.

Πx = λx⇒ Π2x = λΠx⇒ Πx = λ2x⇒ λx = λ2x

Therefore λ = 0, 1.

3. Π is isospectral with BBTL+
G, which is identity on the n − 1 dimensional space

orthogonal to the vector 1. Hence Π has rank n− 1.

Since Π is unitarily equivalent to
∑n−1

i=1 eie
T
i , we can apply Ahlswede-Winter inequality

for this matrix.

Say Π̃ = 1
T

∑T
i=1 Yi. Then,

Π̃ =
1

T

∑
e∈E(H)

Me

Tr[Me]
= BTL+

GLHL
+
GB

Therefore from (1), we know that

Pr

[∣∣∣∣xT (LH − LG)x

xTLGx

∣∣∣∣ > ε

]
≤ Pr[||Π̃−Π|| > ε]

Chapter 2. Randomized Spectral Sparsification 18

and from Ahlswede-Winter inequality, we know that

Pr[||Π̃−Π|| > ε] ≤ 1/2

for T = O(n log n/ε2). Hence, after T iterations, we will get a graph H such that,

Pr

[∣∣∣∣xT (LH − LG)x

xTLGx

∣∣∣∣ > ε

]
≤ 1/2

Therefore, we have shown that we can obtain a good sparsified graph with O(n log n/ε2)

edges.

The reason why sampling proportional to effective resistances works can be seen intu-

itively. If two nodes in the graph are well-connected [many paths between the nodes],

then the effective resistance between these nodes is small. Correspondingly, an edge is

important if there are very few paths connecting its endpoints. The effective resistance

of such an edge will be relatively large. A good sparsifier will include edges which have

high resistance. Therefore sampling proportional to effective resistances makes sense.

In a random walk setting, the commute time between two nodes is proportional to

effective resistance between the nodes [CRR+96]. If the commute time between two

nodes is small, a random walk from one node takes relatively few number of steps to

reach the other node. Therefore, if these nodes are connected by an edge, then that

edge is less important, and can be assigned lesser probability. This can be considered

another justification for the sampling procedure.

Equivalent to Corollary 2.2.1, we get the following corollary of graph sparsification for

weighted graphs.

Corollary 2.3.1. Given a graph G = (V,E) with weight function w : E → R, and β > 0.

Say we have numbers qe such that qe ≥ w(e)Re, for all e ∈ E, where Re is the effective

resistance across endpoints of e. Let W :=
∑

e∈E qe. Then we can find a subgraph H of

Chapter 2. Randomized Spectral Sparsification 19

G with vertex set V , such that

LG � 2LH � 3LG

with probability 1− β. The number of edges in H will be O(W logW log(1/β)).

Proof. The proof of the corollary follows in a fashion similar to the proof of Corollary

2.2.1, that is, sampling with probability proportional to qe, and taking ε > 0.

2.4 Stretch Sparsifiers

Corollary 2.4.1 (Stretch Sparsfiers). Given a graph G = (V,E) with weight function

w : E → R+ and for any γ < m and β > 0, we can compute a subgraph H of G with

n− 1 + Õ((m log2 n/γ) log 1
β) edges such that

LG � 2LH � 3γLG

with probability atleast 1− β.

The algorithm takes Õ((m log n+ n log2 n+m log2 n/γ) log 1
β) time.

Proof. From Corollary 2.3.1, we know that if we can find numbers qe, then a sparsifier

can be constructed. Here we will establish the proof by finding such a set {qe}.

Say T is a spanning tree of the graph G. Then stretch of an edge e w.r.t to T , strT (e),

is defined as the length of the path between the endpoints of e in T . Clearly, for any T

and all e ∈ E,

strT (e) ≥ w(e)Re

Therefore, we can use strT (e) as qe. Correspondingly,

W =
∑
e∈E

qe = n− 1 +
∑

e∈E−T
strT (e) = n− 1 + strT (G)

where, strT (G) is called the stretch of G w.r.t T .

Chapter 2. Randomized Spectral Sparsification 20

From the results of Elkin, et al [EEST08], we know that we can find a low-stretch span-

ning tree T in linear time.

Theorem 2.4.1 ([EEST08]). For any undirected graph G, a spanning tree T can be

constructed in Õ(m log n+ n log n log logn) such that the stretch corresponding to T in

G is Õ(m log n).

We will correspondingly use a low-stretch spanning tree for T in further construction.

Hence, by Corollary 2.3.1, the number of samples needed to get a good sparsifer is

O(W logW log(1/β)) = Õ(m log2 n log(1/β))

However, the above bound does not imply any reduction in the number of edges, and is

useless for our purpose. We will have to suitably modify the distribution to prove the

corollary.

To that end, construct graph G′ from G, with same vertex and edge set, but with the

weight function w′, such that, w′(e) = γw(e) if e ∈ T , and w′(e) = w(e) if e /∈ T . It is

easy to see that

LG � L′G � γLG (2)

Also for this new graph, strT (G′) = Õ(m log2 n/γ).

Simultaneously, redefine qe = strT (e) if e ∈ T , and qe = strT (e)/γ if e /∈ T . It can be

checked that they still satisfy qe ≥ w′(e)Re.

Using the probability distribution induced by qe, by Corollary 1.2, we can find a graph

H such that

L′G � 2LH � 3L′G

Applying (2), we get

LG � 2LH � 3γLG

Chapter 2. Randomized Spectral Sparsification 21

We will analyze the number of tree edges and non-tree edges in H separately. The

number of tree-edges is trivially upper bounded by n − 1. We will use Chernoff bound

to find the number of non-tree edges sampled.

Say random variable Xi = 1, if the i-th sampling is a non-tree edge, and 0 otherwise.

Let X =
∑T

i=1Xi, where T = O(W logW log(1/β)) is the number of samples taken.

Then X denotes the number of non-tree edges.

Pr[Xi = 1] =

∑
e∈E−T qe

W

E[Xi] =
∑

e∈E−T

qe
W

=
strT (G′)

W

E[X] =
T∑
i=1

E[Xi]

=
strT (G′)

W
·W logW log(1/β)

= strT (G′) logW log(1/β)

= Õ((m log2 n/γ) log
1

β
)

By Chernoff bound,

Pr[X ≥ (1 + δ)E[X]] ≤ e−δ2E[X]/3

≤ 1

nO(δ2)

Therefore, with high probability, the number of edges inH is less n−1+Õ((m log2 n/γ) log 1
β)

and it satisfies the spectral condition as well.

The reweighting of non-tree edges might seem ”out-of-the-blue”, but can be considered

intuitive. The first step to a good sparsifier is to make sure the sparsified graph remains

connected. To that end, we need to select a skeleton of the graph, which in this case is

Chapter 2. Randomized Spectral Sparsification 22

the low-stretch spanning tree T . The tree-edges are scaled higher than non-tree edges

to ensure this.

Next we should add those non-tree edges which have larger separation in T , since they

affect the connectivity more negatively than others. So we choose a probability distri-

bution proportional to the separation distance in T , which is exactly the stretch of an

edge w.r.t. T .

We will use stretch sparsifiers in the construction of the nearly-linear time Laplacian

solver, since it gives us a resistance-independent way of finding a good sparsifier.

In general, to obtain a sparsifier using the above algorithm, one needs to be able to

sample proportional to effective resistances. However, to compute effective resistances

we need to solve Laplacian systems, since for any edge e, effective resistance across e is

bTe L
+be.

Spielman and Srivastava provided a way to approximately compute effective resistances.

They used the fact that effective resistances are euclidean distances for a certain embed-

ding corresponding to the vertices of the graph. They then used the John-Lindestrauss

lemma to approximately calculate these distances. We refer the reader to [SS08] for a

detailed proof of the same.

Chapter 3

Deterministic Spectral

Sparsification

3.1 Overview

In the previous section, we saw that spectral sparsification is indeed possible, and looked

at a randomized algorithm which achieves the sparsification goal within a factor of log n.

We will now study the result of Batson, Spielman and Srivastava [BSS09], where they

give a novel deterministic sparsification algorithm, which is not just important and

appealing because it’s deterministic, but also due to the novelty and uniqueness of the

methods used.

In particular, they proved the following theorem :

Theorem 3.1.1 ([BSS09]). Given d > 1 and vectors v1, . . . ,vm ∈ Rn, with

m∑
i=1

viv
T
i = I

then, in polynomial time, we can find scalars si ≥ 0 for i ∈ [m] such that

(
1− 1√

d

)2

I �
m∑
i=1

siviv
T
i �

(
1 +

1√
d

)2

I

23

Chapter 3. Deterministic Spectral Sparsification 24

and |{si|si 6= 0}| ≤ ddne.

Note that taking d = 1/ε2 gives us a spectral sparsifier of size O(n/ε2), which is better

than the sparsifier given by the randomized algorithm.

One deterministic method of constructing a sparsifier would be finding an appropriate

vector in each step, and adding it to our sparsifier set. The conditions that characterize

the appropriateness of a vector is the topic that we explore in the following sections.

3.2 Rank one updates

Given a symmetric matrix A, we denote the characteristic polynomial of A as

χ(A)(x) = det(xI−A).

The roots of this polynomial are the eigenvalues of A. The following theorem tells us

that on adding vvT to A, the eigenvalues of the new matrix A + vvT interlace the

eigenvalues of A.

Lemma 3.2.1 (Cauchy’s Interlacing Theorem [Hae]). If the eigenvalues of A are αi and

eigenvalues of A+ vvT are βi, then

α1 ≤ β1 ≤ α2 ≤ . . . αn ≤ βn.

In general, interlacing is a concept associated with the roots of polynomials, and so we

say that χ(A+ vvT) interlaces χ(A).

In particular, following is the exact representation of χ(A+ vvT) w.r.t. χ(A).

Lemma 3.2.2 ([DZ07]). For a non-singular matrix A and a vector v,

det(A+ vvT) = det(A)(1 + vTA−1v)

Chapter 3. Deterministic Spectral Sparsification 25

Using the above lemma,

χ(A+ vvT)(x) = det(xI−A− vvT)

= det(xI−A)(1− vT (xI−A)−1v)

= χ(A)(x)

(
1−

n∑
i=1

〈v,ui〉2

x− λi

)

where {ui}, {λi} are the eigenvectors and eigenvalues of A.

3.3 Interlacing polynomials

A typical deterministic algorithm for sparsification will add one vector to the solution

space in each iteration. So it makes sense that we first analyze the change in matrix

under rank one matrix updates.

In the above setting, at each iteration, we are given a symmetric matrix A, and vectors

v1, . . . ,vm. The Cauchy’s interlacing lemma tells us that polynomials

χ(A+ v1v
T
1)(x), χ(A+ v2v

T
2)(x), . . . , χ(A+ vmvTm)(x)

have a common interlacing. In particular, they all interlace with χ(A).

Marcus, Spielman and Srivastava, in their work on interlacing polynomial families

[MSS14], shed light on the relationship between the roots of a given family of real-

rooted polynomials and the roots of the expected polynomial of this family, with respect

to a given distribution. They showed that under certain conditions, atleast one polyno-

mial from a given collection of polynomials must follow the behaviour of the expected

polynomial.

More formally, we have the following theorem for polynomials with a common interlacing.

Theorem 3.3.1 ([MSS13]). Say we have real-rooted, degree n polynomials f1, f2, . . . , fm

with positive leading coefficients. Let λk(fj) denote the k-th largest root of fj and let

u be any distribution on [m]. If f1, f2, . . . , fm have a common interlacing, then for all

Chapter 3. Deterministic Spectral Sparsification 26

k ∈ {1, 2, . . . , n}

min
j
λk(fj) ≤ λk(Ej∼µ[fj]) ≤ max

j
λk(fj)

Now we know that polynomials χ(A + v1v
T
1), . . . , χ(A + vmvTm)(x) have a common

interlacing.

So using Theorem 3.3.1 we now know that for every k, there exists a j such that the k-th

largest root of χ(A+ vjv
T
j) is atleast as large as the corresponding root of Ej∼µ[χ(A+

vjv
T
j)]. Therefore we will try and explore the properties of the expected rank-one update

polynomial, under the settings of Theorem 3.1.1.

Ej [χ(A+ vjv
T
j)] = Ej [det(xI−A− vjv

T
j)]

= χ(A)

(
1−

n∑
i=1

Ej [〈vj ,ui〉2]
x− λi

)

Since all vi’s are equally likely, probability of choosing vi is 1/m.

Ej [〈vj ,ui〉2] = uTi (Ej [vjvTj])ui

=
1

m
uTi ui =

1

m

The second inequality follows because
∑m

i=1 viv
T
i = I. Therefore,

χ(A+ vjv
T
j) = χ(A)

(
1−

n∑
i=1

1/m

x− λi

)

= χ(A)− 1

m

d

dx
χ(A)

= (1− 1

m
D)χ(A)

where D is the d
dx operator.

At the beginning of the algorithm, we will have A = 0 and χ(A) = xn. After k iterations,

the expected characteristic polynomial will be

(1− 1

m
D)kxn

Chapter 3. Deterministic Spectral Sparsification 27

The above polynomial belongs to the well known class of associated Laguerre polyno-

mials[Kra03]. We will derive the bounds on the eigenvalues of this polynomials, and in

the process try to find a deterministic algorithm which choses vectors which follow the

expected behaviour.

Note that process that we have defined is the following : starting with A = 0, add

a suitable vector vi, for i ∈ [m] in each iteration to A, and we want to analyze the

expected behaviour of such a process. Say that u1, u2, . . . , uk are the vectors chosen

across k iterations. Then, by the interlacing property defined in Theorem 3.3.1, we

know that with positive probability,1

λk

(
k∑
i=1

uiu
T
i

)
≥ λk

(
E

[
k∑
i=1

uiu
T
i

])

From the analysis of the expected polynomial above, we know that

E

[
m ·

k∑
i=1

uiu
T
i

]
= (1−D)kxn = xn−k(1−D)nxk

The second equality can be observed by expansion of the expressions and term-by-term

verification.

Therefore, to bound the k-th root of (1−D)kxn, we derive a lower bound on the lowest

root of (1−D)nxk, which will be the polynomial that we analyze in the next section.2

3.4 Analysis of the Associated Laguerre Polynomial

The idea is to study the behaviour of a polynomial f under the (1−D) operation.

(1−D)f = f − f ′ = f(1− f ′

f
) = f(1 + Φf)

1We are analyzing the k-th largest root since the roots smaller than this will be zero.
2The process to get an upper bound also follows a similar analysis.

Chapter 3. Deterministic Spectral Sparsification 28

where Φf = −f ′

f

Φf (x) = −f
′(x)

f(x)
= −d log f(x)

dx

= − d

dx

(
log

n∏
i=1

(x− λi)

)

=
n∑
i=1

1

λi − x

λi’s are the roots of polynomial f .

We will refer to this function as the lower barrier function. This is because if x is less

than the roots of f , then Φf quantifies the measure of separation. If x gets close to the

lowest root (or any other), Φf shoots to infinity. Thus, in some sense, it functions as a

barrier.

Note that for x strictly less than the roots of f , Φf (x) is increasing, positive and convex.

For every (1 −D) operation, we would like to keep the value of lower barrier function

bounded above. In particular say

b := min{x ∈ R | Φf (x) = ε.}

Then we will prove the following lemma on the behaviour of the lower barrier function

under the (1−D) operation.

Lemma 3.4.1. Given that Φf (b) = ε, then for all δ ≤ 1
1+ε ,

Φ(1−D)f (b+ δ) ≤ ε

Proof.

Φ(1−D)f = −((1−D)f)′

(1−D)f
= −

(f(1 + Φf))′

f(1 + Φf)

= Φf −
Φ′f

1 + Φf

Chapter 3. Deterministic Spectral Sparsification 29

⇒ Φ(1−D)f (b+ δ) = Φf (b+ δ)−
Φ′f (b+ δ)

1 + Φf (b+ δ)

We want Φ(1−D)f (b+ δ) ≤ ε = Φf (b). This is equivalent to saying that

Φf (b+ δ)−
Φ′f (b+ δ)

1 + Φf (b+ δ)
≤ Φf (b)

⇒ Φf (b+ δ)− Φf (b) ≤
Φ′f (b+ δ)

1 + Φf (b+ δ)

⇒
Φ′f (b+ δ)

Φf (b+ δ)− Φf (b)
− Φf (b+ δ) ≥ 1 (2)

Expanding Φ′f and Φf as a sum of terms and applying Cauchy-Schwartz tells us that

Φ′f (b+ δ)

Φf (b+ δ)− Φf (b)
− Φf (b+ δ) ≥ 1

δ
− Φf (b) (3)

Therefore, to ensure 2, we need

1

δ
− Φf (b) ≥ 1 ⇒ δ ≤ 1

1 + ε
.

The above lemma also tell us that for δ ≤ (1 + ε)−1, the roots of (1 − D)f are lower

bounded by b+ δ.

Consider the following inverse function of Φf :

sminε(f) := min{x ∈ R | Φf (x) = ε}

One can see that sminε(f) = b and also that it defines a lower bound on the roots of f ,

such that ε functions as a sensitivity parameter to this measure.

Under the operation (1−D), we would like to observe how does the lower bound change.

The above lemma yields the following corollary in this regard.

Chapter 3. Deterministic Spectral Sparsification 30

Corollary 3.4.1. sminε((1−D)f) ≥ sminε(f) + (1 + ε)−1

Applying the corollary k times gives us the following bound on the lowest root of (1 −

D)nxk.

λmin((1−D)nxk) ≥ sminε((1−D)nxk))

≥ sminε(x
k) +

n

1 + ε

= −k
ε

+
n

1 + ε

Taking ε =
√
k√

n−
√
k

gives us

λmin((1−D)nxk) ≥ n

(
1−

√
k

n

)2

In particular, the lemma and the corollary tells us that to keep the value of the lower

barrier function bounded across all operations of (1−D), we should increase the lower

barrier by atmost (1 + ε)−1.

We can similarly also define an upper barrier function Φf = f ′/f , and the corresponding

inverse function smaxε(f) and in a similar fashion, derive the following lemma:

Lemma 3.4.2. smaxε((1−D)f) ≤ smaxε(f) + 1
1−ε

Again, the lemma tells us that to keep the upper barrier function (and simultaneously

the maximum root) bounded, we must increase the upper barrier by atleast (1− ε)−1.

Taking ε =
√
k√

n+
√
k

gives us

λmax((1−D)nxk) ≤ n

(
1 +

√
k

n

)2

Therefore, we have an upper and lower bound on the roots of the expected characteristic

polynomial after k iterations.

Chapter 3. Deterministic Spectral Sparsification 31

In particular, for k = dn iterations, as required in the statement of Theorem 3.1.1, the

ratio of the largest and smallest roots of the expected characteristic polynomial will be

d+ 2
√
d+ 1

d− 2
√
d+ 1

This is the exact bound that we require in Theorem 3.1.1. Infact the above explanation,

along with the interlacing property of Theorem 3.3.1, intuitively tells us that in each

iteration, there exists a vector whose addition to the existing system should follow the

behaviour expected on addition of the average vector.

3.5 Deterministic Sparsification Algorithm using Barrier

Functions

The deterministic algorithm given by Batson, Spielman and Srivastava [BSS09] made

use of barrier functions on eigenvalues of the system, to keep them bounded across all

iterations.

Intuitively speaking, we want to choose a vector in each iteration which simulates the

behaviour in the expected case. From the analysis of associated Laguerre polynomial,

we know that using the barrier function Φ, we can effectively capture the behaviour

of the (1 − D) operator on the extremal eigenvalues. We will make use of similar

barrier function to keep the eigenvalues of system bounded across all iterations in the

deterministic algorithm.

Formally, say we want to keep the eigenvalues of the current n× n matrix A between u

and l. Then the upper barrier function will be

Φu(A) :=

n∑
i=1

1

u− λi
= Tr(uI−A)−1

and the lower barrier function will be

Φl(A) :=

n∑
i=1

1

λi − l
= Tr(A− lI)−1.

Chapter 3. Deterministic Spectral Sparsification 32

As before, the physical importance of barrier functions lie in the fact that if the eigen-

values get close to the boundaries, the value of barrier functions shoot to infinity. There-

fore, keeping the value of barrier functions finite, along with other necessary conditions,

should ensure that the eigenvalues remain bounded.

The algorithm involves starting with an empty matrix, say A0, and adding an appro-

priate rank-one matrix svvT in each iteration, for T = dn iterations. Say we construct

the sequence of matrices A0(= 0), A1, . . . AT , with Ai corresponding to the matrix con-

structed at the i-th iteration.

In each iteration, adding a positive rank-one matrix will increase the eigenvalues of the

current matrix. Correspondingly, we will have to increase the upper and lower bounds

by a small amount, to ensure that we keep the eigenvalues bounded.

In particular, we will fix parameters εu, εl, δu, δl, u0, l0, such that in each of i = 1 to T

iterations we can find a vector v and scalar s which satisfies all the conditions below:

1. Φu0(A0) = n
u0

= εu

2. Φl0(A0) = n
l0

= εl

3. Φu+δu(Ai+1) ≤ Φu(Ai) ≤ εu, where u = u0 + iδu

4. Φl+δl(Ai+1) ≤ Φl(Ai) ≤ εl, where l = l0 + iδl

5. λmax(Ai+1) ≤ u+ δu and λmin(Ai+1) ≥ l + δl

We will find the equivalent conditions on the feasible vectors (which are also computable

in polynomial time), such that the above five are sastisfied. In particular the following

lemma should hold:

Theorem 3.5.1. Φl′(A+ svvT) ≤ Φl(A) if and only if svTLAv ≥ 1, where

LA =
(A− l′I)−2

Φl′(A)− Φl(A)
− (A− l′I)−1, and

l′ = l + δl

Chapter 3. Deterministic Spectral Sparsification 33

To prove the above theorem, we will use the Sherman-Morrison formula, on the be-

haviour of inverse of a matrix under rank-one updates.

Lemma 3.5.1 (Sherman-Morrison formula [SM50]). Given a non-singular matrix A and

a vector v

(A+ vvT)−1 = A−1 − A−1vvTA−1

1 + vTA−1v

Proof of Theorem 3.5.1.

Φl′(A+ svvT) = Tr(A+ svvT − l′I)−1

= Tr(A− l′I)−1 − Tr(
s(A− l′I)−1vvT (A− l′I)−1

1 + svT (A− l′I)−1v
)

= Tr(A− l′I)−1 − svT (A− l′I)−2v

1 + svT (A− l′I)−1v

= Φl′(A)− svT (A− l′I)−2v

1 + svT (A− l′I)−1v

We want

Φl′(A+ svvT) ≤ Φl(A)

⇔ Φl′(A)− svT (A− l′I)−2v

1 + svT (A− l′I)−1v
≤ Φl(A)

⇔ svT (A− l′I)−2v

1 + svT (A− l′I)−1v
≥ Φl′(A)− Φl(A)

⇔ svT (A− l′I)−2v

Φl′(A)− Φl(A)
≥ 1 + svT (A− l′I)−1v

⇔ svT
(

(A− l′I)−2

Φl′(A)− Φl(A)
− (A− l′I)−1

)
v ≥ 1

⇔ svTLAv ≥ 1

One could also prove this theorem using the proof of Lemma 3.4.1. In particular, note

that the condition (2) exactly corresponds to the condition svTLAv ≥ 1.

Therefore one can see that we want each iteration in our algorithm to follow behaviour

similar to the application of the (1−D) operator.

Corollary 3.5.1. If Theorem 3.3 holds then λmin(A+ svvT) ≥ l + δl.

Chapter 3. Deterministic Spectral Sparsification 34

Proof. Say λmin(A+svvT) < l+δl, then there exists s′ < s such that λmin(A+s′vvT) =

l+ δl. In that case, Φl′(A+ s′vvT) =∞. But by Theorem 1.3, we know Φl′(A+ s′vvT)

must be finite.

Therefore, λmin(A+ svvT) ≥ l + δl.

Similarly, we can prove the following theorem on the bound on lower barrier function.

Theorem 3.5.2 ([BSS09]). Φu′(A+ svvT) ≤ Φu(A) if and only if svTUAv ≤ 1, where

UA =
(u′I−A)−2

Φu(A)− Φu′(A)
+ (u′I−A)−1, and

u′ = u+ δu

Corollary 3.5.2. If Theorem 3.4 holds then λmax(A+ svvT) ≤ u+ δu.

Hence, if we prove the existence of s and v such that svTUAv ≤ 1 and svTLAv ≥ 1,

then conditions 1-5 will all be satisfied.

Note that if we instead prove that Ev[vTUAv] ≤ Ev[vTLAv], then we can find a v which

satisfies vTUAv ≤ vTLAv and set s such that 1 lies between the quantities.

Lemma 3.5.2. If Φl(A) ≤ εu, then

Ev[vTLAv] ≥ 1

δl
+ εl

Chapter 3. Deterministic Spectral Sparsification 35

Proof.

Ev[vTLAv] = E[Tr(LAvvT)]

= Tr(E[LAvvT])

= Tr(LA · E[vvT])

= Tr(LA)

=
Tr(u′I−A)−2

Φu(A)− Φu′(A)
+ Tr(u′I−A)−1

≥ 1

δl
− Φl′(A) (4)

≥ 1

δl
− εl

To prove the inequality at 4 one can either expand LA as a sum of terms and apply

Cauchy-Schwartz or directly infer the result from the equivalent step 3 in the analysis

of the expected case.

Note that this lemma is equivalent to the step (3) in the analysis of the expected case.

Particularly, it is ensured that the each iteration follows the expected behaviour of

(1−D) operation.

The matrix UA also satisfies a similar lemma.

Lemma 3.5.3. If Φu(A) ≤ εu, then

Ev[vTUAv] ≤ 1

δu
+ εu

The proof is along the lines of the proof of Lemma 3.4.2.

We will set the values of δu, δl, εu, εl such that they satisfy

1

δu
+ εu ≤

1

δl
− εl (5)

Chapter 3. Deterministic Spectral Sparsification 36

and this will ensure that

Ev[vTUAv] ≤ Ev[vTLAv]

In particular, the values of the parameters are the following

εu =

√
d− 1

d+
√
d

εl =
1√
d

Lemma 3.4.1 and 3.4.2 tells us the increment in the lower and upper barrier to ensure

that the values of the lower and upper barrier functions remain bounded. Using those

expressions, we can set

δu =

√
d+ 1√
d− 1

δl = 1

One can verify that these values satisfy (5). Therefore, using these values for the pa-

rameters, we know we can find a vector v in each iteration such that vTUAv ≤ vTLAv.

Also after T = dn steps,

λmax(AT)

λmin(AT)
≤ n/εu + dnδu
−n/εl + dnδl

≤ (
√
d+ 1)2

(
√
d− 1)2

The following algorithm summarises the process represented and proved above.

Chapter 3. Deterministic Spectral Sparsification 37

Data: Vectors v1, . . . ,vm

Result: Sparsification values si for all i ∈ [m]

A← 0 j ← 0 si ← 0 for all i ∈ [m] while j < dn do

Compute matrices UA and LA for i ∈ [m] do

if vTi UAvi ≤ vTi LAvi then

k ← i

end

end

sk ← 1/(vTk LAvk) A← A+ svkv
T
k

end

To computationally find such a v in each iteration, we need to compute UA and LA in

each iteration. This can be done in O(n3) time. Then we need to calculate vTi UAvi

and vTi LAvi for all i ∈ [m], which can be done in O(n2m) time. The total number of

iterations is dn. Hence the total time taken by this algorithm is O(dn3m).

The important feature of the algorithm is that at every iteration, we try to extend the

expected behaviour. The analysis of the expected scenario sheds light on the bound that

can be achieved and the means to do the same, by the application of barrier functions.

Therefore, the algorithm in itself, can be considered an extension of the analysis of the

associated Laguerre polynomial, ensuring that the properties derived there, are satisfied

while choosing an appropriate vector in each iteration.

Chapter 4

Laplacian Solver using

Preconditioners

4.1 Overview

The line of work leading upto the Laplacian solver and the corresponding genealogy of

the research based on the techniques used in finding a nearly-linear time Laplacian solver

has led to significant developments in spectral graph theory and it’s associated fields.

One such development was the concept of spectral sparsification, and we will exhibit the

importance of such sparsifiers in this section.

We will look at the construction of the Laplacian solver proposed by Spielman and Teng

[ST08], and further improved upon and simplified by Koutis, Miller and Peng [KMP11].

4.2 Preconditioners

One of the most general techniques of solving a linear system of equations Ax = b,

where A is a symmetric positive-definite matrix, is the Conjugate Gradient method.

The following is the formal statement the algorithm :

38

Chapter 4. Laplacian Solver using Preconditioners 39

Theorem 4.2.1 (Conjugate Gradient Method [Vis13]). For a symmetric positive definite

matrix A, a vector b and ε > 0, after t = O(
√
κ(A) log 1

ε) iterations, the Conjugate

Gradient algorithm finds a vector x, such that

||xt −A+b||A ≤ ε||x0 −A+b||A

where Ax∗ = b and κ(A) is the condition number of A.

Each iteration of the algorithm takes O(tA) time, where tA is the time taken to multiply

a vector to A.

The Conjugate Gradient method was first published in [HS52] and for a detailed analysis

of the algorithm, we refer the reader to the following book [BV04].

4.2.1 Condition number of a matrix

The condition number of a matrix is defined as

κ(A) = ||A|| · ||A+||

Given a system Ax = b, condition number is a quantitative measure of the maximum

relative error in x with respect to the relative error in b.

The above definition of condition number does depend on the particular matrix norm

used. However, since most such norms are equivalent to each other within a constant,

the condition number changes by atmost a constant on changing the norm.

If A is normal, then one can verify that

κ(A) =
|λmax(A)|
|λmin(A)|

The complexity of the Conjugate gradient method depends crucially on the condition

number of the system, and for an ill-conditioned matrix, directly applying the algorithm

does not work.

Chapter 4. Laplacian Solver using Preconditioners 40

Instead if we can find a matrix B such that the condition number of B+A is small and

B is easy to invert, then the Conjugate Gradient method can be used to efficiently solve

the system B+Ax = B+b. Such a matrix B is called a preconditioner.

4.2.2 Laplacian Preconditioner

There is no predefined method for finding a good preconditioner, it always depends on

the system in consideration. For a Laplacian system however, we saw how to spectrally

sparsify a graph G, to get a subgraph H such that

(1 + ε)−1LG � LH � (1 + ε)LG

LH works as good preconditioner for the system LGx = b since

(1 + ε)−1I � L+
HLG � (1 + ε)I

We will use the sparsifier given by Corollary 2.4.1 of the main sparsification result. Note

that we cannot use the main theorem because it requires us to solve Laplacian systems

to get the probability distribution.

Theorem 4.2.2 (Stretch sparsifiers). Given a graph G with positive edge weights and for

any γ < m and β > 0, we can compute a subgraph H of G with

n− 1 + Õ(m log2 n
γ) 1edges such that

LG � 2LH � 3γLG

with probability atleast 1− β.

The algorithm takes Õ((m log n+ n log2 n+m log2 n/γ) log 1
β) time.

Using graph H from the above theorem gives us a suitable preconditioner for our prob-

lem. Note that κ(L+
HLG) = O(γ).

1A factor of log(1/β) will be implicit in these quantities. We hide it to make the proof tidier.

Chapter 4. Laplacian Solver using Preconditioners 41

While applying Conjugate Gradient method to the preconditioned system L+
HLGx =

L+
Hb, we will have to make O(

√
κ(A) log 1

ε) = O(
√
γ log 1

ε) queries of the form L+
HLGx =

b′. LGx can be computed in O(m) time. So the problem reduces to solving L+
Hx′ = b′

for multiple b′.

Note that the size of H is much smaller compared to G. We will further reduce the

number of edges in H, and then apply the same process recursively on the resulting

graph.

4.3 Greedy Elimination using Cholesky Decomposition

4.3.1 Cholesky Decomposition

A symmetric n×n PSD matrix A can be decomposed into the following form : A = PP T ,

where P is a lower triangular matrix. This is known as the Cholesky Decomposition of

A.

If we can find the Cholesky decomposition of A, then solving Ax = b becomes relatively

easier. This is because given the Cholesky decomposition, A = PP T , we can first solve

for z in Pz = b and then for x in P Tx = z.

To solve for Pz = b, we exploit the property that P is lower triangular.

Pz =

p11 0 0 . . . 0

p21 p22 0 . . . 0

.

.

pn1 pn2 pn3 . . . pnn

z1

z2

.

.

zn

=

b1

b2

.

.

bn

Chapter 4. Laplacian Solver using Preconditioners 42

This is equivalent to the system

p11z1 = b1

p21z1 + p22z2 = b2

. . .

pn1z1 + pn2z2 · · ·+ pnnzn = bn

Solving the first equation gives us z1. Using the value of z1 in second equation gives us

z2 and so on. This way we can easily compute the vector z. We further solve P Tx = z

similarly. The overall time taken to compute x is proportional to the number of non-zero

entries in P .

4.3.2 Decomposition using Schur’s complement

A. George [Geo73] showed that Cholesky decomposition of a PSD matrix can be used

to solve Laplacian systems for certain special graphs, including square grids and trees.

Inspired from their construction, we will give a brief idea about how one can use Schur’s

decomposition to effectively remove redundant vertices from our current sparsified graph

H.

Theorem 4.3.1 (Schur’s lemma). Say we are given an n × n real symmetric matrix A.

We can write A as

A =

d uT

u B

Then, A � 0 if and only if d > 0 and B − uut/d � 0.

Using the above representation, we can write A as,

A =

d uT

u B

 =

 1 0T

u/d In−1

d 0T

0 B − uuT /d

1 uT /d

0 In−1

Chapter 4. Laplacian Solver using Preconditioners 43

Let us denote A1 :=

d 0T

0 B − uuT /d

From Theorem 4.3.1, we know that the matrix B1 := B − uuT /d of size n− 1× n− 1 is

also positive definite. Hence can recursively compute the decomposition of this matrix

as well, in a similar fashion as above, till we get a 2 x 2 matrix, for which the above

representation is a valid decomposition.

Now say we have the decomposition of B1 = P ′DP ′T (recursively computed). Then we

can write A1 as

A1 =

1 0T

0 P ′

d 0T

0 D

1 0T

0 P ′T

And correspondingly A becomes,

A =

 1 0T

u/d P ′

d 0T

0 D

1 uT /d

0 P ′T

Hence we can recursively compute the Cholesky decomposition of A.

At each step if there exists such a row u which has one or two (or a small constant

number of) non-zero entries, then the final triangular matrix P will have only O(n)

non-zero entries. In such a case, the solution to PDP Tx = b can be found in O(n)

time.

4.3.3 Decomposing the Laplacian system

Attempting to employ the decomposition to Laplacian system reduces the problem to

finding a vertex elimination ordering v1, . . . , vn, such that for all i, vi has very few

neighbours amongst vi+1 to vn [preferably one or two]. The problem of finding the most

optimal ordering has been proven to be NP-hard [Yan80].

Chapter 4. Laplacian Solver using Preconditioners 44

However, we can use the above method to remove degree 1 and degree 2 vertices from

our graph, by doing a partial decompostion. Lets say we have p degree 1 and q degree 2

vertices, then we can execute the above recursive procedure till we reach a point where

we have no such vertices present in our graph. We will call this new graph G′.

Note that H has n− 1 + Õ(m log2 n
γ) edges. For simplicity, lets call

k := Õ(m log2 n
γ)

Now in G′, every vertex has degree atleast 3 and total number of edges is n−1+k−(p+q)

2. Therefore,

3(n− p− q) ≤ 2(n− 1 + k − p− q)⇒ (n− p− q) ≤ 2(k − 1)

Hence, the number of vertices in G′ is 2(k − 1) and correspondingly number of edges is

3(k − 1).

If x ∈ R|V (G)| is the solution to LGx = b, then x can be computed as [z y], where z corre-

sponds to the eliminated vertices, and can be computed using the partial decomposition

above 3; and y, c ∈ R|V (G′)| is the solution to the system LG′y = c. Therefore we have

now reduced our problem to this new system with Õ(m log2 n
γ) vertices and Õ(m log2 n

γ)

edges.

The entire elimination procedure involves removing degree 1 and 2 vertices and compu-

tation of their corresponding solutions, and can be done in

O(m+ n) time.

4.4 Recursive Preconditioning and Complexity Analysis

After Cholesky decomposition, the new graph G′ has Õ(m log2 n
γ) vertices and Õ(m log2 n

γ)

edges. We will recursively apply the preconditioning process and the greedy elimination

on G′ and continue till the number of vertices goes beyond certain threshold value nt.

The following figure gives a visual representation of the process.

2Removing degree 2 vertex removes 2 edges and adds 1, because of the term B − uuT /d
3i-the step of the decompostion gives us xi.

Chapter 4. Laplacian Solver using Preconditioners 45

Figure 4.1: Recursion tree of the Laplacian solver. The quantity in brackets denote
the number of verties and edges.

The recursive procedure can be visualized as a tree with the original Laplacian system

being the root node. Each internal node makes O(
√
γ) queries of the form LG′x = b.

Say the height of the tree is d. The graph corresponding to the leaf nodes will have nt

nodes. We will use the Gaussian elimination method to solve the Laplacian system for

these graphs. Each such system will take O(n3t) time.

Now that the general algorithm has been described, we can calculate the time required

in the process of finding the solution to the system and show that setting γ = O(log4n)

and nt = log n gives us a nearly-linear time solver.

Since Gaussian elimination is used to solve the systems corresponding to the leaf nodes,

time required at the leaf nodes will be O((
√
γ)dn3t). For γ = O(log4n) and nt = log n,

d =
log n

log logn

At each level, we will have to find the spectral sparsifier of the graph corresponding to

the previous level. The total time taken in finding all sparsifiers is

d∑
i=1

Õ((mi log ni + ni log2 ni +mi log2 ni/γ)

where (ni,mi) are number of vertices and edges at i-th level.

Chapter 4. Laplacian Solver using Preconditioners 46

Taking γ = O(log4n), it can be seen that mi decreases geometrically w.r.t to i and so

the above runtime will converge to O(m log n+ n log2 n).

Furthermore, at each internal node, we will have to perform the greedy elimination step.

This will take time O(mi + ni). The total time taken for all internal nodes will be

d∑
i=1

(
√
γ)iO(mi + ni)

Again for γ = O(log4n), this sum converges to O(m).

Therefore the total time taken to get ε-close to the solution of the Laplacian system is

Õ(m log 1
ε).

Chapter 5

Laplacian Solver using

Randomized Kaczmarz Method

5.1 Overview

In 2013, Kelner et. al. [KOSZ13] showed that the general iterative technique of Ran-

domized Kaczmarz can be used to construct a nearly-linear time Laplacian solver, which

is much simpler compared to the solver based on spectral sparsification.

This solver aims to compute the electric current in the circuit corresponding to the

Laplacian system Lx = b, and use it to find the voltage vector x. In contrast, sparsifi-

cation based solvers used iterative techniques like Conjugate Gradient method to find x

directly.

In this chapter we give the details of this Laplacian solver based on Randomized Kacz-

marz method, outlining the algorithm used and the complexity achieved. We then

suggest certain extensions of the method employed and their application in solving the

Laplacian system.

47

Chapter 5. Laplacian Solver using Randomized Kaczmarz Method 48

5.2 Kaczmarz Method

Kaczmarz method and its variants are a set of general iterative techniques for solving

a system of linear equations. They were first discovered by S. Kaczmarz [Kac37]. We

describe the Kaczmarz method below and present its analysis and application to the

Laplacian problem in the later sections.

Given a system of linear equations Ax = b, we try to find the solution of the system by

finding the point in the solution space which satisfies ∀i, 〈ai, x〉 = bi, where ai’s are the

rows of A and bi are the elements of vector b. The notation hi will denote the hyperplane

〈ai, x〉 = bi.

In Kaczmarz method, we start with some suitably chosen point x0, and at each iteration,

try to satisfy one of the hyperplanes. Say xt is the point we have at the end of t-th

iteration, and it does not satisfy some hyperplane hj :: 〈aj , x〉 = bj . Then we take the

orthogonal projection of xt on hj to get xt+1.

In the case of simple Kaczmarz method, the hyperplane chosen in t-th iteration is

〈ak, x〉 = bk, where k = t (mod m) + 1. However apart from some special cases, the

convergence bound of simple Kaczmarz method for general systems is not known.

Another variant is the Randomized Kaczmarz method, developed by Strohmer and Ver-

shayin [SV09a], where we associate a probability distribution with the set of hyperplanes,

and sample from this distribution at each iteration of the algorithm.

5.3 Randomized Kaczmarz Method

In the Randomized Kaczmarz method, at each iteration we sample a hyperplane from

the given probability distribution on the set of hyperplanes. The considered probability

distribution is the following :

Each hyperplane is chosen with probability proportional to the square of the norm of its

coefficient vector, i.e., hyperplane hi : 〈ai, x〉 = bi is chosen with probability proportional

to ||ai||2.

Chapter 5. Laplacian Solver using Randomized Kaczmarz Method 49

We will prove the following convergence theorem for the above described Randomized

Kaczmarz method.

Theorem 5.3.1 ([Vis13]). For the given system of equations Ax = b with solution x∗, we

can get

||xt − x∗|| ≤ ε||x0 − x∗||

for t = O(κ2(A) log 1
ε) with probability 0.9, using Randomized Kaczmarz method.

The Conjugate Gradient method, in comparison, converges in
√
κ(A) iterations, with

each iteration taking time proportional to time taken to multiply a vector to A. Random-

ized Kaczmarz method takes more number of iterations to converge, but the time taken

per iteration is the time taken to compute the projection of a vector on a hyperplane.

We will see how this characterization is useful in our system.

To prove the above theorem we will first prove the following lemma. The proof of the

theorem will follow from the lemma by a simple application of Markov’s inequality.

Lemma 5.3.1. In the t+ 1-th step of the Randomized Kaczmarz method,

E||xt+1 − x∗||2 ≤
(

1− 1

κ2(A)

)
||xt − x∗||2

where expectation is taken over the random choice in the t+ 1-th iteration.

Proof. Say at the (t + 1)-th iteration, we randomly chose the hyperplane 〈ai, x〉 = bi.

The unit normal to this hyperplane is ai
||ai|| . Then for some c,

xt+1 = xt + c · ai
||ai||

⇒ 〈ai, x∗〉 = 〈ai, xt+1〉

= 〈ai, xt〉+ c · 〈ai, ai〉
||ai||

= 〈ai, xt〉+ c · ||ai||

Chapter 5. Laplacian Solver using Randomized Kaczmarz Method 50

Therefore,

c =
〈ai, x∗ − xt〉
||ai||

and,

xt+1 − xt =
〈ai, x∗ − xt〉
||ai||2

.ai (5.1)

||xt+1 − x∗||2 = ||xt − x∗ +
〈ai, x∗ − xt〉
||ai||2

.ai||2

= ||xt − x∗||2 −
〈ai, x∗ − xt〉2

||ai||4
||ai||2

= ||xt − x∗||2 −
〈ai, x∗ − xt〉2

||ai||2

We now look at the expected value of the LHS with respect to the choice of hyperplane

in the (t+ 1)-th iteration. Note that since the iterations upto t are fixed, ||xt − x∗||2 is

not affected by taking expectation.

E||xt+1 − x∗||2 = ||xt − x∗||2 −
m∑
i=1

||ai||2∑
i ||ai||2

〈ai, x∗ − xt〉2

||ai||2

= ||xt − x∗||2 −
m∑
i=1

〈ai, x∗ − xt〉2

||A||2F

= ||xt − x∗||2(1−
1

||A||2F

m∑
i=1

〈ai, x∗ − xt〉2

||x∗ − xt||2
)

= ||xt − x∗||2(1−
1

||A||2F
||A(x∗ − xt)||2

||x∗ − xt||2
)

≤ ||xt − x∗||2(1−
1

||A||2F ||A+||2
)

≤ (1− 1

κ2(A)
)||xt − x∗||2

Chapter 5. Laplacian Solver using Randomized Kaczmarz Method 51

Proof of Theorem 5.3.1. Using Lemma 5.3.1, after T = κ2(A) log 10
ε iterations, we can

say

E||xT − x∗||2 ≤
(

1− 1

κ2(A)

)T
||x0 − x∗||2

≤ ε

10
||x0 − x∗||2

Let Y be the random variable ||xT − x∗||2. By Markov’s inequality, the probability that

Y is greater than ε2||x0 − x∗||2 is

Pr[Y ≥ ε2||x0 − x∗||2] ≤
E[Y]

ε2||x0 − x∗||2

≤ 1

10

Therefore,

Pr[Y ≤ ε2||x0 − x∗||2] ≥ 0.9

5.4 Equivalent formulation of Laplacian system

In 2013, Kelner et al. [KOSZ13] developed a combinatorial algorithm to solve Laplacian

systems, which also had a geometric interpretation in terms of Randomized Kaczmarz

method. We state and analyze the algorithm using Randomized Kaczmarz method in

this section.

We will derive an equivalent formulation of the Laplacian system of equations, and apply

Randomized Kaczmarz method on it to get an approximate solution to our problem.

Given the system Lx = b and the corresponding graph G = (V,E), we look at the

electrical circuit with the same structure as this graph and resistance of 1 ohm on the

edges. Fix an arbitrary orientation of the edges in E, which will denote the flow of

current in these edges. Let the matrix B ∈ Rm×n be the orientation matrix for this

circuit, with B[e, i] = +1, if vertex i is the tail of edge e and −1, if it is the head.

Chapter 5. Laplacian Solver using Randomized Kaczmarz Method 52

Then it is easy to see that BTB = L.

Let i ∈ Rm be the vector of current in edges and v ∈ Rn be the vector of voltages in the

vertices. Vector b will denote the external current in the vertices. By the Kirchoff’s law

of current conservation, BT i = b.

Also by Ohm’s law, Bv = i.

⇒ BTBV = BT i

⇒ Lv = b

Therefore, finding the voltage in this circuit will give us the solution to the Laplacian

system of equations, and vice-versa.

On careful consideration, one can also realise that just finding the current in each edge

of this circuit also suffices. This is because for each edge (p, q), vq − vp = iq,p. Given the

current in each of the edges, one can take some vertex to have voltage 0, and, relative

to that, calculate the voltages in other vertices using the given set of linear equations in

two variables of voltages, in O(m) time. So we will focus on finding the current vector.

For a vector f ∈ Rm to be a valid flow, it has to satisfy Kirchoff’s conservation law, i.e.,

BT f = b.

Also it must satisfy the Ohm’s law. One way to express this constraint would be to

say that for all cycles, potential drop across a cycle must be zero. Let 1C ∈ Rm be the

indicator vector for cycle C. Then f must satisfy 〈1C , f〉 = 0, for all cycles C in G.

Since there can exponential number of cycles in the graph, we need to capture the second

constraint by some subset of cycles. To this end, we consider the vector space spanned

by the indicator vectors of the cycles of the graph (reffered to as cycle space) taking

the addition operation to be the component-wise sum of vectors, mod 2. If we can

efficiently find a small basis for this vector space, then we can use it for the new system

of equations.

Chapter 5. Laplacian Solver using Randomized Kaczmarz Method 53

5.4.1 Basis of cycle space of graph G

Take a spanning tree T of graph G. It contains n− 1 edges. Adding one non-tree eked

to this tree will result in a cycle. Let 1Ce ∈ Rm be the indicator vector for the cycle

formed when e is inserted in T . We will show that 1Ce ’s form a cycle space.

Lemma 5.4.1. For all e ∈ E/T , the cycle formed by adding e to T , 1Ce , is unique and

the set of all such cycles {1Ce}e∈E/T is a basis for the cycle space.

Proof. Before proving the above statement, we will first show that linear combination

of two cycle vectors results in a vector which again represents a cycle.

Take cycle vectors 1Ca and 1Cb
. If Ca and Cb have any common edge e, the corresponding

components’ addition mod 2 will be 0. Then 1Ca + 1Cb
will have 0 for the component

corresponding to e and 1 for the components corresponding to edges neighbouring to e

in 1Ca and 1Cb
. So the sum will again be a cycle, albeit a different one.

Next we will prove that for any cycle C which does not belong to the set, {1Ce : e ∈

E − T}, 1C is a linear combination of some elements in this set.

Say C contains non-tree edges e1, e2, ...ek. Then

1C + 1Ce1
+ ...+ 1Cek

will have 0 in all components corresponding to non-tree edges. Also, by our earlier proof,

this sum will correspond to some cycle in the graph. So the sum corresponds to a cycle

composed only of tree edges. There is only one such cycle, which is the empty cycle.

Therefore,

1C + 1Ce1
+ ...+ 1Cek

= 0

Hence, 1C is a linear combination of 1Ce1
, ...,1Cek

.

So {1Ce : e ∈ E − T} is a valid basis for the cycle space.

Chapter 5. Laplacian Solver using Randomized Kaczmarz Method 54

From the above analysis, we now have the following system of equations whose solution

is the current vector in the circuit formed from graph G.

〈1Ce , f〉 = 0 ∀e ∈ E/T , such that BT f = b (1)

Given the above system of equations, we solve it using the Randomized Kaczmarz

method stated earlier. However, we need to start with an appropriate f0 which sat-

isfies Bf0 = b. This is the necessary and sufficient condition to ensure Bft = b for all

iterations t, because

ft+1 = ft + c · 1Ce

⇒ Bft+1 = Bft + c ·B1Ce

But we know that potential drop across a cycle is zero, i.e., B1Ce = 0. So if Bf0 = b,

then Bft = b for all iterations t.

5.4.2 Choice of f0

We need a vector which is a valid flow for the given circuit. To find this, we take a

spanning tree of the graph, and starting from the leaf edges, we assign a flow to each

edge so as to satisfy the flow conservation on the parent node, moving from bottom

to top. Since the overall external flow is zero, flow conservation will be satisfied on all

nodes till the root.

We can now apply Randomized Kaczmarz method on 1 using the above specified f0,

and obtain an approximate current vector.

The only thing left to analyze is the number of iterations, or in particular, the condition

number of this system of equations.

Chapter 5. Laplacian Solver using Randomized Kaczmarz Method 55

5.4.3 Condition number of the system

Let A denote the matrix with 1Ce as its rows. We know that κ(A)2 = ||A+||2||A||2F .

Lemma 5.4.2. ||Af || ≥ ||f || if Bf = 0

Proof. A is an m− n+ 1×m matrix. Assume w.l.o.g., that the first n− 1 columns of

A correspond to tree-edges. Arrange the non-tree edges part of A to form an identity

matrix. This again can be done without affecting the system. So A looks like,

[
AT IN

]

with AT and IN corresponding to tree and non-tree edges respectively.

Similarly we divide f into two vectors fT and fN , corresponding to tree and non-tree

edges respectively. We will first prove that ATT fN = fT .

This is true because flow in a non-tree edge e is inherent to the cycle Ce, since e is not

present in any other cycle. This is the flow which is present because of circulation in

cycle Ce. So to find the flow in a tree edge, one just needs to sum up the flows in each

of the cycles in which this tree edge is present, which corresponds to the sum of flows in

the corresponding non-tree edges which form this cycle. This is exactly what the above

equality represents.

Therefore,

||Af ||2 = ||AT fT + INfN ||2 = ||AT fT ||2 + ||fN ||2 + 2fTT A
T
T fN

= ||AT fT ||2 + ||fN ||2 + 2||fT ||2 ≥ ||fN ||2 + ||fT ||2 = ||f ||2

We know that ||A+|| = supf∈Rm
||f ||
||Af || . But since by our analysis of Randomized Kacz-

marz method we know that we only need to consider vectors of the form f1 − f2, where

Chapter 5. Laplacian Solver using Randomized Kaczmarz Method 56

both f1 and f2 are flow vectors, the following definition of ||A+|| suffices.

||A+|| = sup
f∈Rm,Bf=0

||f ||
||Af ||

Therefore from the above lemma, we can infer ||A+|| ≤ 1.

We now look at ||A||F .

||A||F =
∑
i,j

a2i,j = m− n+ 1 +
∑
e∈E/T

strT (e)

where, strT (e) is the length of path between the endpoints of e in T , also called the

stretch of e. Also, strT (G) =
∑

e∈E/T strT (e)

So the problem has now reduced to finding a spanning tree of the graph which minimizes

the overall stretch. In this regard, we will again use the well known result by Elkin et

al. [EEST08] stated below.

Theorem 5.4.1 ([EEST08]). For any undirected graph G, a spanning tree T can be

constructed in Õ(m log n+ n log n log logn) such that the stretch corresponding to T in

G is Õ(m log n).

From the above theorem, we can see that ||A||F = Õ(m). Therefore, the number of

iterations in the algorithm is Õ(m).

Each iteration involves finding the projection on the sampled hyperplane, which in our

case is addition of relevant amount of flow to one of the cycles in the graph. This can

be done in O(log n) time using link-cut data structure.

Therefore, the overall time complexity of this Laplacian solver is Õ(m).

Chapter 5. Laplacian Solver using Randomized Kaczmarz Method 57

5.5 New directions - Randomized Kaczmarz methods based

on Dihedral Angles

We explore possible improvements and propose better sampling procedures in the Ran-

domized Kaczmarz algorithm or its applications to the Laplacian system.

Firstly, we will take another look at the geometric interpretation of the algorithm. Say

we have the system of equations Ax = b, where A is an m×n matrix. In each iteration,

we randomly select a hyperplane corresponding to a row of A, choosing 〈ai, x〉 = bi with

probability ||ai||2/||A||2F .

However, notice that if we scale any hyperplane with some constant, we change its

probability of selection. Even though 〈ai, x〉 = bi and c · 〈ai, x〉 = c · bi are the same

hyperplane, the probability of selection of both are different and depends on c. The

change in scaling can in turn affect the number of iterations required for convergence of

the algorithm. This has also been noted in the following articles [CHJ09] [SV09b].

To counter this problem, we look into finding a probability distribution which is inde-

pendent of the scaling of the system. The motivation for this is that the Randomized

Kaczmarz method, as described above, is a geometric algorithm. As long the geometric

structure remains same, changing the algebraic structure should not have any impact

on the algorithm or its complexity.

We will base our probability distribution on the dihedral angle between hyperplanes.

There are two methods for this, which are listed below.

5.5.1 Method 1

Let h :: 〈α, x〉 = β be some appropriately chosen hyperplane in the given space. The

dihedral angle between h and hi is defined as

Dh,hi := 〈α̂, âi〉

Chapter 5. Laplacian Solver using Randomized Kaczmarz Method 58

We define probability of selecting hi as

pi =
D2
h,hi∑

iD
2
h,hi

=
〈α̂, âi〉2∑
i〈α̂, âi〉2

We now use this probability distribution in the computation of

E||xt+1 − x∗||2. Therefore,

E||xt+1 − x∗||2 = ||xt − x∗||2 −
m∑
i=1

〈α̂, âi〉2∑
j〈α̂, âj〉2

〈âi, x∗ − xt〉2

= ||xt − x∗||2
(

1− 1∑
j〈α̂, âj〉2

m∑
i=1

〈α̂, âi〉2
〈âi, x∗ − xt〉2

||xt − x∗||2

)

= ||xt − x∗||2
(

1− 1

K

m∑
i=1

〈α, âi〉2〈âi, x∗ − xt〉2

||α||2||xt − x∗||2

)

where K =
∑

j〈α̂, âj〉2 ≤ m (number of rows of A).

Also,

∑
i

〈α, âi〉2〈âi, x∗ − xt〉2

||α||2||xt − x∗||2
=
〈âi ⊗ âi, α⊗ (x∗ − xt)〉2

||α⊗ (x∗ − xt)||2

=
||A⊗.(α⊗ (x∗ − xt))||2

||α⊗ (x∗ − xt)||2

where A⊗ is the matrix whose i-th row is âi ⊗ âi.

Therefore,

E||xt+1 − x∗||2 ≤ ||xt − x∗||2(1−
1

K · ||A+
⊗||2

)

≤ ||x0 − x∗||2(1−
1

K · ||A+
⊗||2

)t

So the number of iterations required for this algorithm to get ε-close to solution is

O(K · ||A+
⊗||2 log 1

ε).

Chapter 5. Laplacian Solver using Randomized Kaczmarz Method 59

The choice of α plays a crucial role in the determining the complexity of this procedure.

However, a trivial upper bound, independent of α can be obtained in the following way

||A⊗||2F =
m∑
i=1

||âi ⊗ âi||2 =
m∑
i=1

||âi||4 = m

⇒ K ≤ ||A⊗||2F

Hence, the number of iterations to get ε-close to the solution is O(κ2(A⊗) log 1
ε).

The complexity bound for the simple Randomized Kaczmarz algorithm and Dihedral

angle based algorithm cannot be compared for a general system of equations. However,

in certain scenarios, it can be shown that the for a certain choice of α, the dihedral angle

based method outperforms the simple Randomized Kaczmarz algorithm.

5.5.1.1 Application of Dihedral Angles based Randomized Kaczmarz algo-

rithm to Laplacian systems

Once again we will use the modified system of equations based on flow inequalities, to

get the solution to the Laplacian system on a graph G = (V,E). That is, the linear

system in consideration is the following :

〈1Ce , f〉 = 0 ∀e ∈ E/T , such that BT f = b

where, T is a spanning tree of G and B is the edge-incidence matrix of G.

In this case, the probability of selecting the i-th hyperplane is

pi =
D2
h,hi∑

iD
2
h,hi

=
〈α̂, 1̂Ci〉2∑
i〈α̂, 1̂Ci〉2

‘

Let α = 1. Then,

〈1̂, 1̂Ci〉2 = 〈 1√
m
,

1Ci√
|Ci|
〉2 =

〈1,1Ci〉2

m|Ci|
=
|Ci|2

m|Ci|
=
|Ci|
m

Chapter 5. Laplacian Solver using Randomized Kaczmarz Method 60

Therefore, for this choice of α,

pi =
〈1̂, 1̂Ci〉2∑
i〈1̂, 1̂Ci〉2

=
|Ci|∑
i |Ci|

which is same as the probability distribution in the simple Randomized Kaczmarz case.

Therefore, for α = 1, the Dihedral angle based Randomized Kaczmarz yields similar

time complexity bounds as simple Randomized Kaczmarz algorithm.

There may exist a choice of α for which the new method performs better than simple

Randomized Kaczmarz algorithm. However, the best possible α is dependent on the

linear system in consideration and the search for one can be treated as an optimization

problem in itself.

5.5.2 Method 2

We look at the analysis of the t + 1-th iteration of the Randomized Kaczmarz to get

better insight into choice of hyperplanes. Specifically, we look at the following step

E||xt+1 − x∗||2 = ||xt − x∗||2 −
m∑
i=1

pi〈âi, x∗ − xt〉2

where pi is the probability of choosing the i-th hyperplane.

Say hj :: 〈aj , x〉 = bj was the hyperplane selected in the t-th iteration. Then

〈aj , x∗〉 = 〈aj , xt〉

⇒ 〈aj , x∗ − xt〉 = 0

∑m
i=1 pi〈âi, x∗ − xt〉2 is a convex combination of 〈âi, x∗ − xt〉2, for all i. This will be

maximised when pk = 1, where k = arg maxi〈âi, x∗ − xt〉2, and all other probabilities

are 0.

So in each iteration, we need to find the hyperplane hi, where

i = arg maxi〈âi, x∗ − xt〉 given that 〈âj , x∗ − xt〉 = 0.

Chapter 5. Laplacian Solver using Randomized Kaczmarz Method 61

But we do not know the value of x∗, so we need to relax our system and admit an

approximate solution. We can relax it in the following way : find the hyperplane hi,

where

i = arg maxi maxx〈âi, x〉 given that 〈âj , x〉 = 0.

So the solution space of x is all those vectors which are orthogonal to âj . Now 〈âi, x〉

will be maximized if âi has a large component in the direction of x and correspondingly

small in the direction of aj .

This problem is equivalent to finding the hyperplane hi, where

i = arg mini〈âi, âj〉.

However, note that this can be interpreted as a deterministic solution, where in each

iteration, a hyperplane is chosen as per the condition above. But such a deterministic

solution is not desirable. This is because in many cases, it may happen that for any

two (or any other small number of) hyperplanes hi and hj have the smallest 〈âi, âj〉,

compared to other pairs. Then the choice of hyperplanes will keep cycling between these

two and there will be no convergence, since other hyperplanes will remain unsatisfied.

Therefore, we convert the above strategy to a randomized algorithm, with the probability

of selecting hi,

pi = 1− 〈âi, âj〉2∑
i〈âi, âj〉2

where hj is the hyperplane chosen in the previous iteration.

Wallace and Sekman [WS14], in their paper ”Deterministic Versus Randomized Kacz-

marz Iterative Projection” propose and analyse such a selection procedure for the hyper-

planes. They experimentally show that it works atleast as good as simple Randomized

Kaczmarz method and considerably better than deterministic Kaczmarz method. How-

ever they fall short of providing a proof for their observation. The above reasoning is

an small explanation in concurrence with their experimental results.

Chapter 6

Future Directions

Based on our study, we propose the following interesting directions of work in the field

of Spectral Sparsification and Laplacian solvers:

• Showing that Laplacian solvers based on spectral sparsification are equivalent to

the Randomized Kaczmarz based Laplacian solver.

• Extending the results of spectral sparsification to more general matrices. For

example, in [SHS16], it was shown that the sparsification technique of [SS08] can

be extended to sparsify sets of positive-semidefinite matrices of arbitrary rank.

Also in [Sri10], the result of [BSS09] was extended to general quadratic forms.

• Finding deterministic sparsification algorithms with better time complexity than

the algorithm of [BSS09].

• Empirically comparing the time complexity of convergence of Randomized Kacz-

marz method given by Strohmer and Vershayin, and the one based on sampling

proportional to Dihedral angles.

• Finding Laplacian solvers independent of sparsifiers and low-stretch spanning trees.

A major step in this direction was provided by Kyng and Sachdeva who gave a

randomized algorithm to construct sparse Cholesky decompostion of Laplacian

matrices [KS16].

62

Bibliography

[AM85] N. Alon and V. Milman. λ1, isoperimetric inequalities for graphs and su-

perconductors. Journal of Combinatorial Theory, 38:73–88, 1985.

[AW06] R Ahlswede and A Winter. Strong converse for identification via quan-

tum channels. In Proceedings of IEEE Transactions on Information Theory,

volume 48, pages 569–579, 2006.

[BH12] J. C. A. Barata and M. S. Hussein. The Moore-Penrose Pseudoinverse. A

Tutorial Review of the Theory. Brazillian Journal of Physics, 42:146–165,

2012.

[BK96] Andras Benczur and David Karger. Approximating s-t minimum cuts in

˜O(n2) time. In Proceedings of the 28th ACM symposium on Theory of com-

puting (STOC), pages 47–55, 1996.

[BSS09] Joshua Batson, Daniel Spielman, and Nikhil Srivastava. Twice-ramanujan

sparsifiers. In Proceedings of the 41st ACM symposium on Theory of com-

puting (STOC), page 1704–1721, 2009.

[BV04] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University

Press, 2004.

[Che70] Jeff Cheeger. A lower bound for the smallest eigenvalue of the laplacian.

Problems in Analysis, 625:195–199, 1970.

[CHJ09] Y. Censor, G. Herman, and M. Jiang. A note on the behavior of the

randomized Kaczmarz algorithm of Strohmer and Vershynin. Journal of

Fourier Analysis and Applications, 15:431–436, 2009.

63

Bibliography 64

[CRR+96] AK Chandra, P Raghavan, WL Ruzzo, R Smolensky, and P Tiwari. The

electrical resistance of a graph captures its commute and cover times. Com-

putational Complexity, 6:312–340, 1996.

[DZ07] J. Ding and A. Zhou. Eigenvalues of rank-one updated matrices with some

applications. Applied Mathematics Letters, 20(12):1223–1226, 2007.

[EEST08] Michael Elkin, Yuval Emek, Daniel A Spielman, and Shang-Hua Teng.

Lower-stretch spanning trees. SIAM Journal on Computing, 38(2):608–628,

2008.

[Fie73] M. Fiedler. Algebraic connectivity of graphs. Czech. Math. Journal, 23:298–

305, 1973.

[Fie10] M. Fiedler. Spectral radius and hamiltonicity of graphs. Linear Algebra and

its Applications, 432:2170–2173, 2010.

[Geo73] A. George. Nested dissection of a regular finite element mesh. SIAM Journal

on Numerical Analysis, 10:345–363, 1973.

[GT79] R. Gilbert and R. Tarjan. A separator theorem for planar graphs. SIAM

Journal on Applied Mathematics, 36(2):177–189, 1979.

[GT86] J. Gilbert and R. Tarjan. The analysis of a nested dissection. Numerische

Mathematik, 50(4):377–404, 1986.

[Hae] Willem Haemers. Interlacing eigenvalues and graphs. http://members.upc.

nl/w.haemers/interlacing.pdf.

[HS52] M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving

linear systems. Journal of Research of the National Bureau of Standards,

49:409–436, 1952.

[Kac37] S. Kaczmarz. Angenherte Au sung von Systemen linearer Gleichungen. Bul-

letin International de l’Acadmie Polonaise des Sciences et des Lettres, pages

355–357, 1937.

http://members.upc.nl/w.haemers/interlacing.pdf
http://members.upc.nl/w.haemers/interlacing.pdf

Bibliography 65

[KMP11] Ioannis Koutis, Gary Miller, and Richard Peng. A nearly-m log n time

solver for SDD linear systems. In Proceedings of the 2011 IEEE 52nd Annual

Symposium on Foundations of Computer Science (FOCS), pages 590–598,

2011.

[KMST10] Alexandra Kolla, Yury Makarychev, Amin Saberi, and Shang-Hua Teng.

Subgraph sparsification and nearly optimal ultrasparsifiers. In Proceedings

of the 42nd ACM symposium on Theory of computing (STOC), pages 57–66,

2010.

[KOSZ13] J Kelner, L Orecchia, A Sidford, and Z Zhu. A Simple, Combinatorial

Algorithm for Solving SDD Systems in Nearly-Linear Time. In Proceedings of

the 45th ACM symposium on Theory of computing (STOC), pages 911–920,

2013.

[Kra03] Ilia Krasikov. On extreme zeros of classical orthogonal polynomials. 2003.

http://arxiv.org/pdf/math/0306286v1.pdf.

[KS16] Rasmus Kyng and Sushant Sachdeva. Approximate Gaussian Elimination

for Laplacians - Fast, Sparse, and Simple. 2016. http://arxiv.org/pdf/

1605.02353v1.pdf.

[LS13] Yin Tat Lee and Aaron Sidford. Efficient Accelerated Coordinate Descent

Methods and Faster Algorithms for Solving Linear Systems. In Proceedings

of Foundations of Computer Science (FOCS), 2013.

[MSS13] Adam Marcus, Daniel Spielman, and Nikhil Srivastava. Interlacing Families

I: Bipartite Ramanujan Graphs of All Degrees. In Proceedings of Foundations

of Computer Science (FOCS), 2013.

[MSS14] Adam Marcus, Daniel Spielman, and Nikhil Srivastava. Ramanujan Graphs

and the Solution of the Kadison-Singer Problem. In Proceedings of ICM’14,

2014.

[MSS15] Adam Marcus, Daniel Spielman, and Nikhil Srivastava. Interlacing Fami-

lies II: Mixed Characteristic Polynomials and the Kadison-Singer Problem .

Annals of Mathematics, 182(1):327–350, 2015.

http://arxiv.org/pdf/math/0306286v1.pdf
http://arxiv.org/pdf/1605.02353v1.pdf
http://arxiv.org/pdf/1605.02353v1.pdf

Bibliography 66

[Rud99] M. Rudelson. Random Vectors in the Isotropic Position. Journal of Func-

tional Analysis, 164(1):60–72, 1999.

[SHS16] Marcel K. De Carli Silva, Nicholas J. A. Harvey, and Cristiane M. Sato.

Sparse Sums of Positive Semidefinite Matrices. Journal ACM Transactions

on Algorithms (TALG) - Special Issue on SODA’12 and Regular Papers, 12,

2016.

[SM50] J Sherman and W.J. Morrison. Adjustment of an Inverse Matrix Correspond-

ing to a Change in One Element of a Given Matrix. Annals of Mathematical

Statistics, 21:124–127, 1950.

[Sri10] N. Srivastava. Spectral sparsification and restricted invertibility, 2010. http:

//www.cs.yale.edu/homes/srivastava/dissertation.pdf.

[SS08] Daniel Spielman and Nikhil Srivastava. Graph sparsification by effective

resistances. In Proceedings of the 40th ACM symposium on Theory of com-

puting (STOC), pages 563–568, 2008.

[ST04] D. Spielman and S. Teng. Nearly-linear time algorithms for graph parti-

tioning, graph sparsification, and solving linear systems. In Proceedings of

the 36th Annual ACM Symposium on Theory of Computing (STOC), pages

81–90, 2004.

[ST08] Daniel Spielman and Shang-Hua Teng. Nearly-linear time algorithms for

preconditioning and solving symmetric, diagonally dominant linear systems.

CoRR, abs/cs/0607105, 2008.

[ST11] Daniel Spielman and Shang-Hua Teng. Spectral sparsification of graphs.

SIAM Journal on Computing, 40(4):981–1025, 2011.

[SV09a] T. Strohmer and R. Vershayin. A randomized Kaczmarz algorithm for lin-

ear systems with exponential convergence. Journal of Fourier Analysis and

Applications, 15:262–278, 2009.

[SV09b] T. Strohmer and R. Vershayin. Comments on the randomized Kaczmarz

method. Journal of Fourier Analysis and Applications, 15:437–440, 2009.

http://www.cs.yale.edu/homes/srivastava/dissertation.pdf
http://www.cs.yale.edu/homes/srivastava/dissertation.pdf

Bibliography 67

[Vai91] Pravin M. Vaidya. Solving linear equations with symmetric diagonally dom-

inant matrices by constructing good preconditioners., 1991.

[Vis13] Nisheeth K. Vishnoi. Lx=b, Laplacian Solvers and Their Algorithmic Appli-

cations. Now, 2013. http://research.microsoft.com/en-us/um/people/

nvishno/site/lxb-web.pdf.

[WS14] T. Wallace and A. Sekman. Deterministic Versus Randomized Kaczmarz

Iterative Projection. 2014. http://arxiv.org/abs/1407.5593/.

[Yan80] M. Yannakakis. Computing the Minimum Fill-In is NP-Complete. SIAM

Journal on Algebraic and Discrete Methods, 2:77–79, 1980.

http://research.microsoft.com/en-us/um/people/nvishno/site/lxb-web.pdf
http://research.microsoft.com/en-us/um/people/nvishno/site/lxb-web.pdf
http://arxiv.org/abs/1407.5593/

	Abstract
	Contents
	1 Introduction
	1.1 Overview
	1.2 History
	1.3 Outline
	1.4 Preliminaries
	1.4.1 Positive Semi-Definite Matrix
	1.4.2 Spectral Decomposition
	1.4.3 Pseudo-Inverse
	1.4.4 Interlacing polynomials
	1.4.5 Laplacian Matrix of a graph
	1.4.6 Laplacian Systems and Electrical Circuits
	1.4.7 Laplacian solver

	2 Randomized Spectral Sparsification
	2.1 Overview
	2.2 Randomized Sparsification using Ahlswede-Winter Inequality
	2.3 Randomized Graph Sparsification
	2.4 Stretch Sparsifiers

	3 Deterministic Spectral Sparsification
	3.1 Overview
	3.2 Rank one updates
	3.3 Interlacing polynomials
	3.4 Analysis of the Associated Laguerre Polynomial
	3.5 Deterministic Sparsification Algorithm using Barrier Functions

	4 Laplacian Solver using Preconditioners
	4.1 Overview
	4.2 Preconditioners
	4.2.1 Condition number of a matrix
	4.2.2 Laplacian Preconditioner

	4.3 Greedy Elimination using Cholesky Decomposition
	4.3.1 Cholesky Decomposition
	4.3.2 Decomposition using Schur's complement
	4.3.3 Decomposing the Laplacian system

	4.4 Recursive Preconditioning and Complexity Analysis

	5 Laplacian Solver using Randomized Kaczmarz Method
	5.1 Overview
	5.2 Kaczmarz Method
	5.3 Randomized Kaczmarz Method
	5.4 Equivalent formulation of Laplacian system
	5.4.1 Basis of cycle space of graph G
	5.4.2 Choice of f0
	5.4.3 Condition number of the system

	5.5 New directions - Randomized Kaczmarz methods based on Dihedral Angles
	5.5.1 Method 1
	5.5.1.1 Application of Dihedral Angles based Randomized Kaczmarz algorithm to Laplacian systems

	5.5.2 Method 2

	6 Future Directions
	Bibliography

